This function estimates the log power spectral density against the log frequency, and calculates a slope \(\alpha\).
calc_PSD(chain, max_freq = 0.1, filter_freq = TRUE, plot = FALSE)
Matrix of n x d dimensions, n = iterations, d = dimensions sequence
The maximum frequency to be considered in PSD if filter_freq = TRUE
. See also Details
.
Boolean. Whether PSD only considers the frequencies between 0 and max_freq
. The default setting is TRUE
. See also Details
.
Boolean. Whether to return a plot or the elements used to make it.
Returns a list with log frequencies, log PSDs, and slope and intercept estimates.
A number of studies have reported that cognitive activities contain a long-range slowly decaying autocorrelation. In the frequency domain, this is expressed as \(S(f)\) ~ \(1/f^{-\alpha}\), with \(f\) being frequency, \(S(f)\) being spectral power, and \(\alpha\) \(\epsilon\) \([0.5,1.5]\) is considered \(1/f\) scaling. See See Zhu et al. (2018) for a comparison of Levy Flight and PSD measures for different samplers in multimodal representations.
The default frequency range in PSD analysis extends from 0 to 0.1, which is specified by max_freq
. It is because the logarithmic spectral power density tends to flatten beyond a frequency of 0.1. As a result, some researchers (e.g., Gilden et al. 1995
; Zhu et al. 2022
) estimate the value of \(\alpha\) using only frequencies below 0.1. When filter_freq
is set to FALSE
, the frequency range will be from 0 to the Nyquist frequency.
Gilden D, Thornton T, Mallon M (1995).
“1f Noise in Human Cognition.”
Science, 267(5205), 1837--1839.
ISSN 0036-8075, 1095-9203, doi:10.1126/science.7892611
.
Zhu J, León-Villagrá P, Chater N, Sanborn AN (2022).
“Understanding the Structure of Cognitive Noise.”
PLoS Computational Biology, 18(8), e1010312.
doi:10.1371/journal.pcbi.1010312
.
Zhu J, Sanborn AN, Chater N (2018).
“Mental Sampling in Multimodal Representations.”
Advances in Neural Information Processing Systems, 31, 5748--5759.
set.seed(1)
chain1 <- sampler_mh(1, "norm", c(0,1), diag(1))
calc_PSD(chain1[[1]], plot= TRUE)
#> $log_freq
#> [1] -3.010300 -2.709270 -2.533179 -2.408240 -2.311330 -2.232149 -2.165202
#> [8] -2.107210 -2.056057 -2.010300 -1.968907 -1.931119 -1.896357 -1.864172
#> [15] -1.834209 -1.806180 -1.779851 -1.755027 -1.731546 -1.709270 -1.688081
#> [22] -1.667877 -1.648572 -1.630089 -1.612360 -1.595327 -1.578936 -1.563142
#> [29] -1.547902 -1.533179 -1.518938 -1.505150 -1.491786 -1.478821 -1.466232
#> [36] -1.453997 -1.442098 -1.430516 -1.419235 -1.408240 -1.397516 -1.387051
#> [43] -1.376832 -1.366847 -1.357087 -1.347542 -1.338202 -1.329059 -1.320104
#> [50] -1.311330 -1.302730 -1.294297 -1.286024 -1.277906 -1.269937 -1.262112
#> [57] -1.254425 -1.246872 -1.239448 -1.232149 -1.224970 -1.217908 -1.210959
#> [64] -1.204120 -1.197387 -1.190756 -1.184225 -1.177791 -1.171451 -1.165202
#> [71] -1.159042 -1.152967 -1.146977 -1.141068 -1.135239 -1.129486 -1.123809
#> [78] -1.118205 -1.112673 -1.107210 -1.101815 -1.096486 -1.091222 -1.086021
#> [85] -1.080881 -1.075802 -1.070781 -1.065817 -1.060910 -1.056057 -1.051259
#> [92] -1.046512 -1.041817 -1.037172 -1.032576 -1.028029 -1.023528 -1.019074
#> [99] -1.014665 -1.010300 -1.005979 -1.001700
#>
#> $log_psd
#> [1] 1.054538094 -0.005930573 0.896786005 1.601153185 1.309203752
#> [6] 0.741801273 1.050227678 1.106918969 0.476371236 0.718913806
#> [11] 0.980239063 -0.947765261 0.802918292 0.412632319 -0.228496611
#> [16] 0.547708384 0.840352208 1.251342067 0.058799573 0.521948989
#> [21] -0.038402312 -0.655631219 0.911660674 -0.244662100 -0.333394109
#> [26] -0.545201065 0.158920085 0.781421260 0.986483649 1.024663776
#> [31] 0.396074099 1.040048502 0.665157519 0.611152390 1.091004665
#> [36] 0.239480726 0.585810241 0.632275406 0.586461558 0.400097363
#> [41] 0.435268345 -0.811692044 0.484834706 -0.135284380 -0.786454705
#> [46] 0.530231443 0.310909536 -1.378052324 0.224985374 -0.085111407
#> [51] 0.521496950 0.336236148 0.479501668 0.439830966 0.306298043
#> [56] 0.499145188 0.597450019 0.641347778 1.019261082 0.495493648
#> [61] -0.588163269 -1.068117959 -0.652041316 -0.533067666 0.223713776
#> [66] 0.619575998 0.313565577 -0.212928453 0.705966068 0.311988095
#> [71] 0.541442412 -0.566372980 0.297204838 0.371315806 0.357277088
#> [76] -0.942967528 -0.006309224 -0.161103006 -0.069185213 0.256348277
#> [81] 0.179048043 0.014246940 0.293014073 0.164090080 0.519949731
#> [86] 0.720432771 -0.393030620 0.209787414 0.325830141 0.197958377
#> [91] -0.435851122 0.362577011 0.595811630 -0.864417793 -0.288802475
#> [96] -0.192087883 -0.465824519 -0.343159860 -0.763506884 0.032398155
#> [101] -0.831714982 -0.310152145
#>
#> $polyfit
#> slope intercept
#> -0.4706896 -0.4004479
#>